$\textbf{GCSE} \rightarrow \textbf{A} \text{ Level Biology transition}$

Baseline Assessment Questions (From PiXL)

Suggested Mark Scheme:

Question			Answer	Marks
1	а		Adenine-Thymine Cytosine-Guanine	1 1
	b		Protein/enzymes	1
	С		Ribosomes	1
2	а		Evolution (by natural selection)	1
	b		Not enough evidence	1
	С		(Plant/animal dies) and is quickly buried in sediment Not all conditions for decay are present Hard parts of the body are replaced by minerals	1 1 1
	d	i	Organisms that can reproduce to produce viable offspring/offspring that can also reproduce (fertile)	1
		ii	3 from Geographical isolation/named example Mutation of genes Natural Selection/selective advantage Species can no longer interbreed (not produce fertile offspring)	1 1 1 1
3	а	i	A group of organisms, all of the same species, and all of whom live together in a particular habitat.	1
		ii	The total of all populations living together in a particular habitat.	1
	b		Biotic – one from: Predators, prey, plant, microbes Abiotic – one from: Availability of water, temperature, mineral concentration, reference to climate/weather	1
	С		Measure out a transect Using a tape measure Use a quadrat At regular (named) intervals Identify species present Using a key/guide	1 1 1 1 1 1
4	Α		2 Nucleolus 5 Smooth Endoplasmic Reticulum 8 Golgi body	1 1 1

Oxford A Level Sciences

AQA Biology

Question			Answer	Marks
4	b Any 3 from the following structure and function must be given. Lipid bilayer - has a hydrophobic inside and hydrophilic outside, allowing for selective permeability		1	
			Proteins - allow for specific substances to come or some molecules to pass through,	1
			Cholesterol - allows for fluidity of the membrane, Glycoproteins - for cell identification they serve as markers	1 1
5	а		Pancreas	1
	b		3 from Pancreas detects change	1
			Insulin secreted	1
			By alpha cells	1
			Uptake of glucose increased	1
			Liver increases storage of glucose as glycogen	1
	С		Any one from: Amount of chocolate, time taken to eat, other food/drink consumed, age, gender, weight, fitness level/metabolic rate, health/pre existing conditions, use of medicines/drugs	1
	d		Any three from	
			Data suggests that blood glucose returns to normal	1
			Doesn't show how much exercise has been done	1
			Doesn't say age/gender/other named variable	1
			May only be true for chocolate/only one type of food investigated	1
6			Top left: transpiration increases when wind speed increases/there is a positive correlation	1
			Top right: rate increases with pH until the optimum is reached, after the optimum, rate decreases	1
			Bottom left: Increasing light initially increases the rate of photosynthesis, but after a while remains constant	1
			Bottom right: Population increases slowly at first and then increases at a greater rate/increases exponentially	1

Oxford A Level Sciences

AQA Biology

Answers to maths skills practice questions (Kerboodle)

1 Numbers and units

- **1 a** 1 kJ = 1000 J, so 4 500 000 J = 4 500 000/1000 kJ = 4500 kJ 4.5 MJ **b** 1 MJ = 1000 kJ, so 4500 kJ =
- **2** $1 \text{ m} = 10^9 \text{ nm}$ (there are a billion nanometre in a metre)

```
9.0 \times 10^{-8} \text{ m} = 9.0 \times 10^{-8} \times 10^{9} \text{ nm} = 9.0 \times 10^{-8+9} \text{ nm} = 9.0 \times 10 \text{ nm} = 90 \text{ nm}
```

```
1.20 \times 10^{-7} \text{ m} = 1.20 \times 10^{-7} \times 10^{9} \text{ nm} = 1.20 \times 10^{-7+9} \text{ nm} = 1.20 \times 100 \text{ nm} = 120 \text{ nm}
```

Range = 90 nm to 120 nm

- **3 a** 10¹¹ **b** 10¹²
- **c** 1000 + 1000 = 2000 **d** 100 0.01 = 99.99
- **4 a** 10¹ or 10 **b** 10⁻³ or 0.001
- **c** 10^6 or $1\ 000\ 00$ **d** $100^2 \div 100 = 100$ or 10^2
- **5 a** 4 mm **b** 130 s
- c 31 300 μld 0.000 104 mg6 a 57 μmb 8.6 L or 8.6 dm³
- **c** 68 s **d** 0.09 mm

2 Decimals, standard form, and significant figures

- **1** 0.0214 cm^2 0.0218 cm^2 0.03 cm^2 0.034 cm^2
- 2 12.03 cm 12.901 cm 22 cm 22.003 cm 22.25 cm
- **3 a** 3.06×10³ kJ **b** 1.4×10⁵ kg
- **c** 1.8×10⁻⁴ m **d** 4×10⁻⁶ m
- **4 a** 1×10² **b** 1×10⁴
- **c** 1×10⁻² **d** 2.1×10⁷
- 5 Give the following as decimals.
 a 1 000 000 b 4 700 000 000
 c 1 200 000 000 000 d 0.000 796
- 6 a 7600 g / 7640 g b 28 m / 27.5 m c 4.3 g / 4.33 g d 6.0 x 10² m / 5.00 x 10² m
- **7** $1.2 \times 10^4 \,\mathrm{g}$

3 Working with formulae

1 *M*? l = 6.6 mm *O* = 165 µm Change to same units: either both mm or both µm or both m: 165 µm = 0.165 mm M = l/O = 6.6/0.165 = x 40

Oxford A Level Sciences

AQA Biology

- 2 Area = $0.5 \times 2 \text{ cm} \times 9 \text{ cm} = 9 \text{ cm}^2$
- 3 Area = π r² = π × (0.7 μ m)² = π × (0.7 × 10⁻⁶ m) × (0.7 × 10⁻⁶ m) = 1.5 μ m²
- **4** N₀ = 24

7 days = 7×24 hours = 168 hours

so n = 168 ÷ 20 = 8.4

Nt = 24 x 28.4 = 8107 cells

5 N = 96 + 4 + 22 + 3 = 125 animals found

so
$$D = 1 - \sum \left(\frac{n}{N}\right)^2$$

inner brackets: $D = 1 - \left(\left(\frac{96}{125}\right)^2 + \left(\frac{4}{125}\right)^2 + \left(\frac{22}{125}\right)^2 + \left(\frac{3}{125}\right)^2\right)$
indices: $D = 1 - \left(0.768^2 + 0.022^2 + 0.176^2 + 0.024^2\right)$

indices: $D = 1 - (0.768^2 + 0.032^2 + 0.176^2 + 0.024^2)$ addition: D = 1 - 0.6224 = 0.3776 = 0.38 (2.d.p)

6 O = 0.1 mm I = ? M = 50 $I = M \times O = 50 \times 0.1 \text{ mm} = 5 \text{ mm}$

7 Area = 5.3 cm² radius? $A = \pi r^2$

5.3 =
$$\pi r^2$$
 $r^2 = \frac{5.3}{\pi} = 1.687$ $r = \sqrt{1.687} = 1.3 \text{ cm}$
Or $A = \pi r^2$ $r^2 = \frac{A}{\pi}$ $r = \sqrt{\frac{A}{\pi}}$ $r = \sqrt{\frac{5.3}{\pi}} = 1.3 \text{ cm}$

8 7.25 × 10⁻⁶ m (7.25 μm)

9
$$a = \frac{\left(\frac{34}{100}\right) \times 135}{2} = 22.95$$

10 cardiac output = stroke volume x heart rate

stroke volume =
$$\frac{2.7}{77}$$
 = 0.035 dm³

11 Substitute in the known values: $0.84 = \frac{\text{biomass transfer}}{25} \times 100$

Rearrange the equation to give: biomass transfer =
$$\frac{0.84}{100} \times 25 = 0.21$$
 kg

4 Magnification

- **1 a** ×120 **b** ×600
- **2** ×26 000
- **3** 0.88 μm

AQA Biology

5 Percentages and uncertainty

1 a $\frac{2240}{3600000}$ × 100 = 0.06%

b $\frac{480}{3600000} \times 100 = 0.013\%$

2 5.88%

2		
J		

Sucrose conc. / mol dm ⁻³	Initial mass / g	Final mass / g	Mass change / g	Percentage change in mass
0.9	1.79	1.06	-0.73	-40.8%
0.7	1.86	1.30	-0.56	-30.1%
0.5	1.95	1.70	-0.25	-12.8%
0.3	1.63	1.76	+0.13	+8.0%
0.1	1.82	2.55	+0.73	+40.1%
a 1 cm ³	b 0.005 s	c 0.05 °C		

4 5

1

Measurement made	Equipment used	Absolute error	Relative error
Length of a fluid column in a respirometer is 6 mm	mm scale	0.5 mm	$\frac{0.5}{6} \times 100 = 8.3\%$
Volume of a syringe is 12 cm ³ of liquid	0.5 cm ³ divisions	0.25 cm ³	$\frac{0.25}{12} \times 100 = 2.1\%$
Change in mass of 1.6 g	balance with 2 d.p.	0.005 g	$\frac{0.005 \times 2}{1.6} \times 100 = 0.6\%$

6 Scatter graphs and lines of best fit

 $\ensuremath{\mathbb{C}}$ Oxford University Press 2019 \hfill This resource sheet may have been changed from the original.

AQA Biology

c Table 1: Strong correlation. Positive at the start. As light intensity increases, the increase in the rate of photosynthesis decreases (so the graph levels off).
 Table 2: Strong correlation. Negative at the start. As time increases, the rate of the decrease of the concentration decreases (so the graph levels off).